

PHYSICS OF SOUND

• SOUND

- SOUND
- ACOUSTICS

- SOUND
- ACOUSTICS
- AUDIO

• What is sound?

- What is sound?
- How is it generated?

- What is sound?
- How is it generated?
- How does it propagate?

effects of boundaries (theatre walls, floor, ceiling) on:

- effects of boundaries (theatre walls, floor, ceiling) on:
 - propagation

- effects of boundaries (theatre walls, floor, ceiling) on:
 - propagation
 - perception (psychoacoustics)

• sound in its electronic form

- sound in its electronic form
 - Transducers

- sound in its electronic form
 - Transducers
 - Processing

- sound in its electronic form
 - Transducers
 - Processing
 - Transmission

- sound in its electronic form
 - Transducers
 - Processing
 - Transmission
 - Recording

- sound in its electronic form
 - Transducers
 - Processing
 - Transmission
 - Recording
 - Editing

- sound in its electronic form
 - Transducers
 - Processing
 - Transmission
 - Recording
 - Editing
 - System design

- Speech
- Music

- Speech
- Music
- Sound Effects

Sound is generated by a vibrating source as waves of changing pressure.

Sound is generated by a vibrating source as waves of changing pressure.

Human -- vocal chords

Sound is generated by a vibrating source as waves of changing pressure.

Human -- vocal chords Musical instruments -- strings

Sound is generated by a vibrating source as waves of changing pressure.

Human -- vocal chords Musical instruments -- strings

• guitar

Sound is generated by a vibrating source as waves of changing pressure.

Human -- vocal chords Musical instruments -- strings

- guitar
- violin

Sound is generated by a vibrating source as waves of changing pressure.

Human -- vocal chords Musical instruments -- strings

- guitar
- violin
- -- membrane

Sound is generated by a vibrating source as waves of changing pressure.

Human -- vocal chords Musical instruments -- strings • guitar

- violin
- -- membrane
 - gong

Sound is generated by a vibrating source as waves of changing pressure.

Human -- vocal chords Musical instruments -- strings

- guitar
- violin
- -- membrane
 - gong
 - drum skin

Sources of sound:

Sound is generated by a vibrating source as waves of changing pressure.

Human -- vocal chords Musical instruments -- strings

- guitar
- violin
- -- membrane
 - gong
 - drum skin

Electro-mechanical -- loudspeaker diaphragm

MEDIUM	M./SEC.	FT./SEC.	SPEED FACTOR

MEDIUM	M./SEC.	FT./SEC.	SPEED FACTOR
AIR	344	1,130	1

MEDIUM	M./SEC.	FT./SEC.	SPEED FACTOR
AIR	344	1,130	1
WATER	1,480	4,854	4.3

MEDIUM	M./SEC.	FT./SEC.	SPEED FACTOR
AIR	344	1,130	1
WATER	1,480	4,854	4.3
CONCRETE	3,400	11,152	9.8

MEDIUM	M./SEC.	FT./SEC.	SPEED FACTOR
AIR	344	1,130	1
WATER	1,480	4,854	4.3
CONCRETE	3,400	11,152	9.8
DRY WALL	6,600	22,304	19.6

DISTANCE	TIME
1 mile	
1 km.	
1 foot	
1 metre	
1 inch	
1 cm.	

DISTANCE	TIME
1 mile	5 sec.
1 km.	
1 foot	
1 metre	
1 inch	
1 cm.	

DISTANCE	TIME
1 mile	5 sec.
1 km.	3 sec.
1 foot	
1 metre	
1 inch	
1 cm.	

DISTANCE	TIME
1 mile	5 sec.
1 km.	3 sec.
1 foot	0.88 msec.
1 metre	
1 inch	
1 cm.	

DISTANCE	TIME
1 mile	5 sec.
1 km.	3 sec.
1 foot	0.88 msec.
1 metre	3 msec.
1 inch	
1 cm.	

DISTANCE	TIME
1 mile	5 sec.
1 km.	3 sec.
1 foot	0.88 msec.
1 metre	3 msec.
1 inch	73 µsec.
1 cm.	

DISTANCE	TIME
1 mile	5 sec.
1 km.	3 sec.
1 foot	0.88 msec.
1 metre	3 msec.
1 inch	73 µsec.
1 cm.	30 µsec.

Sound takes a finite time to travel from one point to another.

Rule of thumb:

Sound takes a finite time to travel from one point to another.

Rule of thumb:

1 foot per millisecond

Sound takes a finite time to travel from one point to another.

Rule of thumb:

- 1 foot per millisecond
- 1 millisecond per foot

A sound wave has certain properties which define it.

A sound wave has certain properties which define it.

Amplitude

A sound wave has certain properties which define it.

Amplitude intensity of wave measured in:

A sound wave has certain properties which define it.

Amplitude

intensity of wave measured in:

• Pascals (pressure)

A sound wave has certain properties which define it.

Amplitude

intensity of wave measured in:

- Pascals (pressure)
- dB-SPL (Sound Pressure Level)

A sound wave has certain properties which define it.

Amplitude

intensity of wave measured in:

- Pascals (pressure)
- dB-SPL (Sound Pressure Level)
- volts (electrical)

A sound wave has certain properties which define it.

A sound wave has certain properties which define it.

Frequency

A sound wave has certain properties which define it.

Frequency

number of repetitions per second measured in:

A sound wave has certain properties which define it.

Frequency

number of repetitions per second measured in:

• hertz (Hz)

A sound wave has certain properties which define it.

Frequency

number of repetitions per second measured in:

- hertz (Hz)
- cycles per second (cps)

A sound wave has certain properties which define it.

A sound wave has certain properties which define it.

Period

A sound wave has certain properties which define it.

Period

time to complete one cycle:

A sound wave has certain properties which define it.

Period

time to complete one cycle: 1/frequency, measured in:

A sound wave has certain properties which define it.

Period

time to complete one cycle:

- 1/frequency, measured in:
- seconds per cycle (sec.)

A sound wave has certain properties which define it.

Period

time to complete one cycle:

- 1/frequency, measured in:
- seconds per cycle (sec.)
- milliseconds per cycle (msec.)

A sound wave has certain properties which define it.

A sound wave has certain properties which define it.

Wavelength:

A sound wave has certain properties which define it.

Wavelength: distance to complete one cycle:

A sound wave has certain properties which define it.

Wavelength:

distance to complete one cycle: speed/frequency, measured in:

A sound wave has certain properties which define it.

Wavelength:

distance to complete one cycle: speed/frequency, measured in:

• metres (m.)

A sound wave has certain properties which define it.

Wavelength:

distance to complete one cycle: speed/frequency, measured in:

- metres (m.)
- feet (ft.)

Amplitude	

Amplitude		
Low		
20 µPascals		

Ampl	itude	
Low	High	
20 µPascals	20 Pascals	

Amplitude		Frequ	iency
Low	High		
20 µPascals	20 Pascals		

Amplitude		Frequ	iency
Low	High	Low	
20 µPascals	20 Pascals	20 Hz	

Amplitude		Frequ	iency
Low	High	Low	High
20 µPascals	20 Pascals	20 Hz	20 kHz

Amplitude		Frequency	
Low	High	Low	High
20 µPascals	20 Pascals	20 Hz	20 kHz
1,000,000:1			

Amplitude		Frequency	
Low	High	Low	High
20 µPascals	20 Pascals	20 Hz	20 kHz
1,000,000:1		100	00:1

Amplitude vs Frequency:

Amplitude vs Frequency:

These two waveforms have the same amplitude, but the one on the right has 4 times the period (hence 1/4 the frequency).

Amplitude vs Frequency:

These two waveforms have the same amplitude, but the one on the right has 4 times the period (hence 1/4 the frequency).

These two waveforms have the same period (hence the same frequency), but the one on the right is 2 times the amplitude.

The musical equivalent of frequency is pitch.

The musical equivalent of frequency is pitch. — A higher frequency has a higher pitch.

The musical equivalent of frequency is pitch.

- A higher frequency has a higher pitch.
- 'A' above middle 'C' has a frequency of 440 Hz.

The musical equivalent of frequency is pitch.

- A higher frequency has a higher pitch.
- 'A' above middle 'C' has a frequency of 440 Hz.
- A doubling of frequency is called an octave.

Frequency Ranges of Musical Instruments:

Frequency Ranges of Musical Instruments:

Lower frequencies have longer wavelengths and periods.

Frequency	Period	Wavelength	
20 Hz	50 msec.	56.4 ft.	17.2 m.

Frequency	Period	Wavel	ength
20 Hz	50 msec.	56.4 ft.	17.2 m.
200 Hz	5 msec.	5.5 ft.	1.72 m.

Frequency	Period	Wavelength	
20 Hz	50 msec.	56.4 ft.	17.2 m.
200 Hz	5 msec.	5.5 ft.	1.72 m.
2 kHz	0.5 msec.	6.67 in.	17.2 cm.

Frequency	Period	Wavelength	
20 Hz	50 msec.	56.4 ft.	17.2 m.
200 Hz	5 msec.	5.5 ft.	1.72 m.
2 kHz	0.5 msec.	6.67 in.	17.2 cm.
20 kHz	0.05 msec.	0.67 in.	17.2 mm.

Sound Pressure:

Sound Pressure:

Source	Sound Pressure (µPascals)	Distance

Source	Sound Pressure (µPascals)	Distance
Threshold of Hearing	20	0.0 mm.

Source	Sound Pressure (µPascals)	Distance
Threshold of Hearing	20	0.0 mm.
Sound Stage	200	1.0 mm.

Source	Sound Pressure (µPascals)	Distance
Threshold of Hearing	20	0.0 mm.
Sound Stage	200	1.0 mm.
Cinema Audience	2,000	10.0 mm.

Source	Sound Pressure (µPascals)	Distance
Threshold of Hearing	20	0.0 mm.
Sound Stage	200	1.0 mm.
Cinema Audience	2,000	10.0 mm.
Conversation	20,000	10.0 cm.

Source	Sound Pressure (µPascals)	Distance
Threshold of Hearing	20	0.0 mm.
Sound Stage	200	1.0 mm.
Cinema Audience	2,000	10.0 mm.
Conversation	20,000	10.0 cm.
Noisy Factory	200,000	1.0 m.

Source	Sound Pressure (µPascals)	Distance
Threshold of Hearing	20	0.0 mm.
Sound Stage	200	1.0 mm.
Cinema Audience	2,000	10.0 mm.
Conversation	20,000	10.0 cm.
Noisy Factory	200,000	1.0 m.
Niagara Falls	2,000,000	10.0 m.

Source	Sound Pressure (µPascals)	Distance
Threshold of Hearing	20	0.0 mm.
Sound Stage	200	1.0 mm.
Cinema Audience	2,000	10.0 mm.
Conversation	20,000	10.0 cm.
Noisy Factory	200,000	1.0 m.
Niagara Falls	2,000,000	10.0 m.
Threshold of Pain	20,000,000	100.0 m.

Let's use a logarithmic scale to represent relative intensities.

Let's use a logarithmic scale to represent relative intensities.

Each increase of 10 times in intensity is represented by an increase of 20 decibels (dB) in Sound Pressure Level (SPL).

Source	Sound Pressure (µPascals)	dB-SPL
Threshold of Hearing	20	
Sound Stage	200	
Cinema Audience	2,000	
Conversation	20,000	
Noisy Factory	200,000	
Niagara Falls	2,000,000	
Threshold of Pain	20,000,000	

Source	Sound Pressure (µPascals)	dB-SPL
Threshold of Hearing	20	0
Sound Stage	200	
Cinema Audience	2,000	
Conversation	20,000	
Noisy Factory	200,000	
Niagara Falls	2,000,000	
Threshold of Pain	20,000,000	

Source	Sound Pressure (µPascals)	dB-SPL
Threshold of Hearing	20	0
Sound Stage	200	20
Cinema Audience	2,000	
Conversation	20,000	
Noisy Factory	200,000	
Niagara Falls	2,000,000	
Threshold of Pain	20,000,000	

Source	Sound Pressure (µPascals)	dB-SPL
Threshold of Hearing	20	0
Sound Stage	200	20
Cinema Audience	2,000	40
Conversation	20,000	
Noisy Factory	200,000	
Niagara Falls	2,000,000	
Threshold of Pain	20,000,000	

Source	Sound Pressure (µPascals)	dB-SPL
Threshold of Hearing	20	0
Sound Stage	200	20
Cinema Audience	2,000	40
Conversation	20,000	60
Noisy Factory	200,000	
Niagara Falls	2,000,000	
Threshold of Pain	20,000,000	

Source	Sound Pressure (µPascals)	dB-SPL
Threshold of Hearing	20	0
Sound Stage	200	20
Cinema Audience	2,000	40
Conversation	20,000	60
Noisy Factory	200,000	80
Niagara Falls	2,000,000	
Threshold of Pain	20,000,000	

Source	Sound Pressure (µPascals)	dB-SPL
Threshold of Hearing	20	0
Sound Stage	200	20
Cinema Audience	2,000	40
Conversation	20,000	60
Noisy Factory	200,000	80
Niagara Falls	2,000,000	100
Threshold of Pain	20,000,000	

Source	Sound Pressure (µPascals)	dB-SPL
Threshold of Hearing	20	0
Sound Stage	200	20
Cinema Audience	2,000	40
Conversation	20,000	60
Noisy Factory	200,000	80
Niagara Falls	2,000,000	100
Threshold of Pain	20,000,000	120

Range of Human Hearing:

Amplitude		Frequency	
Low	High	Low	High
20 µPascals	20 Pascals	20 Hz	20 kHz
1,000,000:1		1000:1	

Range of Human Hearing:

Amplitude		Frequency	
Low	High	Low	High
20 µPascals	20 Pascals	20 Hz	20 kHz
1,000,000:1		1000:1	
120 dB-SPL		>10 octaves	

• dB represent a relative change in intensity.

- dB represent a relative change in intensity.
- A positive number of dB is an increase in intensity.

- dB represent a relative change in intensity.
- A positive number of dB is an increase in intensity.
- A negative number of dB is an decrease in intensity.

• 1 dB is the smallest noticeable change.

- 1 dB is the smallest noticeable change.
- 3 dB is a definitely noticeable change.

- 1 dB is the smallest noticeable change.
- 3 dB is a definitely noticeable change.
- 6 dB is precisely a doubling or halving.

- 1 dB is the smallest noticeable change.
- 3 dB is a definitely noticeable change.
- 6 dB is precisely a doubling or halving.
- 10 dB is perceived as doubling or halving.

