

Sound 1

Microphones

Sound 1 -- Microphones

Microphones are classified by:

Microphones are classified by:

Operating Principle

Microphones are classified by:

Microphones are classified by:

- Operating Principle -- What physical principle is used to convert mechanical energy into electrical energy?
- Directional Characteristic

Microphones are classified by:

- Operating Principle -- What physical principle is used to convert mechanical energy into electrical energy?
- Directional Characteristic -- How does the microphone respond to sound arriving from different directions?

Operating Principle -- What physical principle is used to convert mechanical energy into electrical energy?

– Carbon

- Carbon
- Piezo

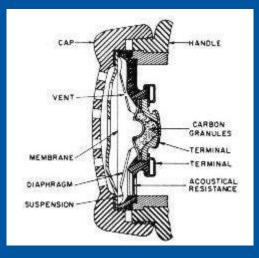
- Carbon
- Piezo (piezo-electric)

- Carbon
- Piezo
- Dynamic

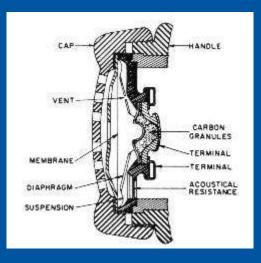
- Carbon
- Piezo
- Dynamic (moving coil)

- Carbon
- Piezo
- Dynamic
- Ribbon

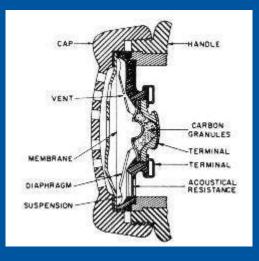
- Carbon
- Piezo
- Dynamic
- Ribbon
- Condenser



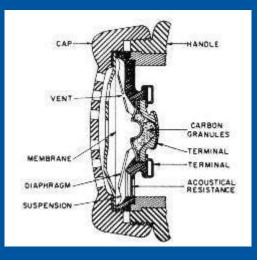
- Carbon
- Piezo
- Dynamic
- Ribbon
- Condenser (capacitor)



The movement of the diaphragm compresses carbon granules, varying the electrical current.

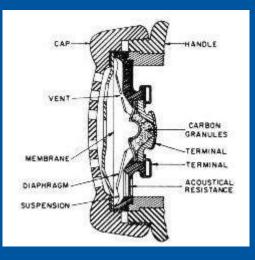

Advantages:

Advantages:


• Cheap to manufacture

Advantages:

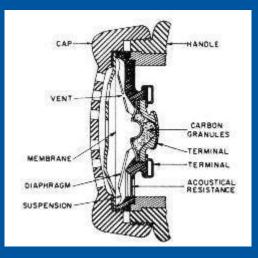
- Cheap to manufacture
- Rugged



Advantages:

- Cheap to manufacture
- Rugged

Disadvantages:

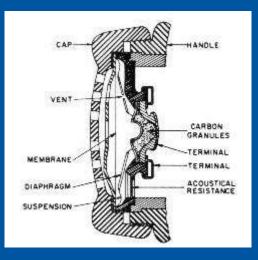


Advantages:

- Cheap to manufacture
- Rugged

Disadvantages:

Requires external power source

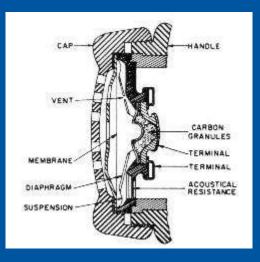


Advantages:

- Cheap to manufacture
- Rugged

Disadvantages:

- Requires external power
 source
- Limited frequency range

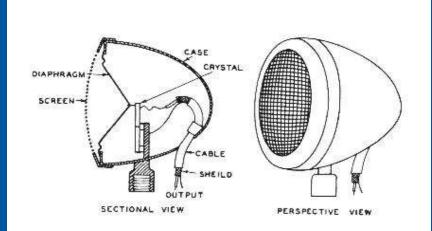


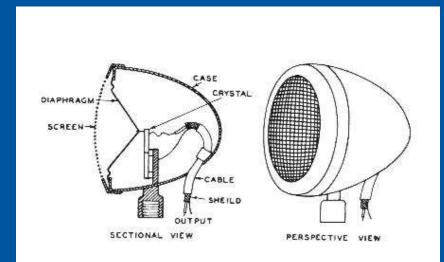
Advantages:

- Cheap to manufacture
- Rugged

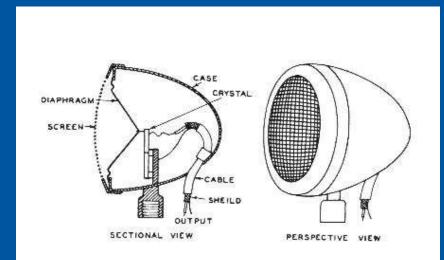
Disadvantages:

- Requires external power
 source
- Limited frequency range
- Limited sensitivity



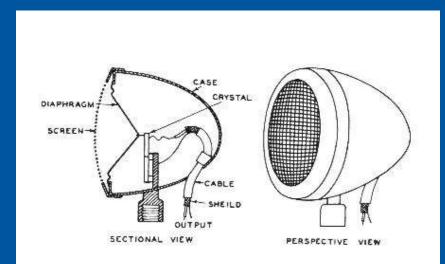


The movement of the diaphragm bends a crystalline materiel, varying the electrical current generated. (Same principle as a BBQ) starter wand.)


Advantages:

Advantages:

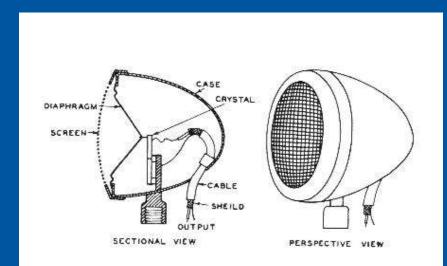
• Cheap to manufacture



Advantages:

• Cheap to manufacture

Disadvantages:

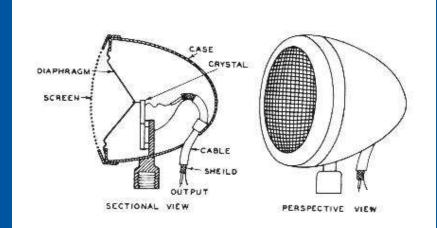


Advantages:

• Cheap to manufacture

Disadvantages:

• Fragile

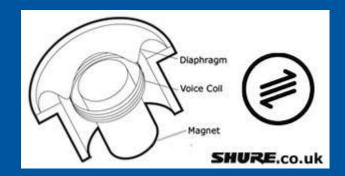


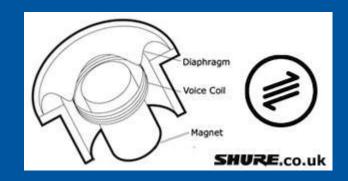
Advantages:

• Cheap to manufacture

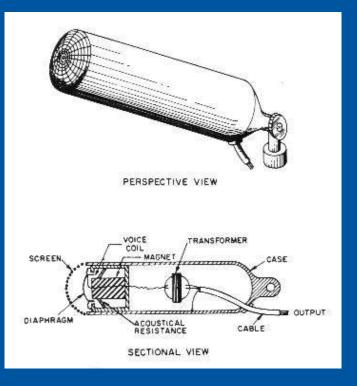
Disadvantages:

- Fragile
- High electrical impedance limits cable length



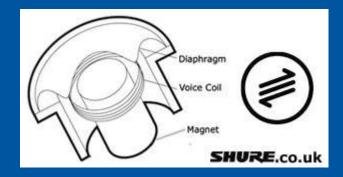


The movement of the diaphragm causes a small coil of wire to move in a magnetic field, varying the electrical current generated. (Same principle as bicycle dynamo.)

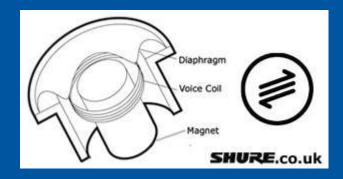


Advantages:

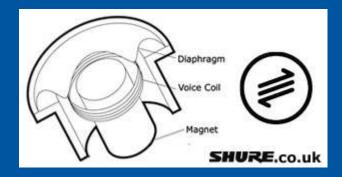
• Good quality for reasonable price



Advantages:

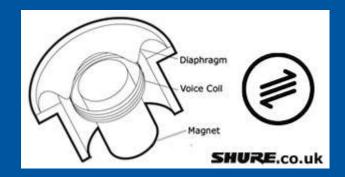

 Good quality for reasonable price

Disadvantages:



- Good quality for reasonable price
- Disadvantages:
 - Susceptible to external magnetic fields (hum)

- Good quality for reasonable price
- Disadvantages:
 - Susceptible to external magnetic fields (hum)
 - Magnet is heavy

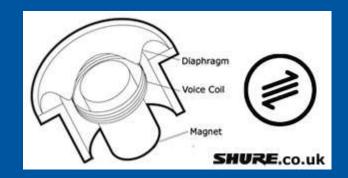


Advantages:

 Good quality for reasonable price

Disadvantages:

- Susceptible to external magnetic fields (hum)
- Magnet is heavy
- Magnetic shielding is heavy

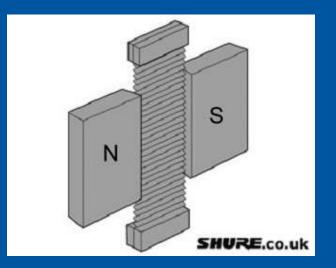


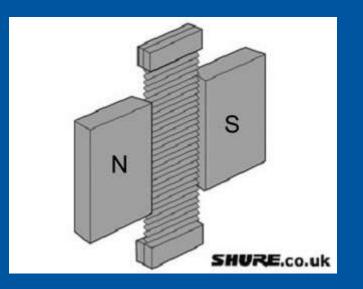
Advantages:

 Good quality for reasonable price

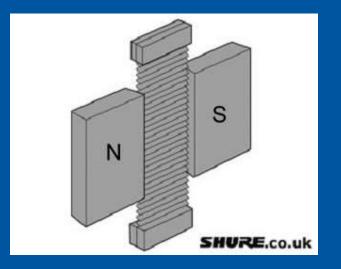
Disadvantages:

- Susceptible to external magnetic fields (hum)
- Magnet is heavy
- Magnetic shielding is heavy
- Inertia of coil limits sensitivity



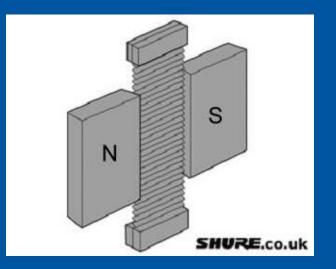


The movement of the ribbon within a magnetic field varies the electrical current generated.



Advantages:

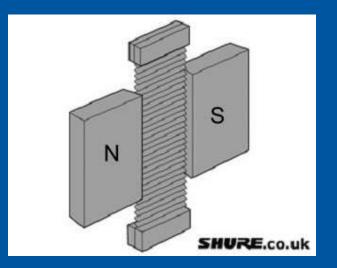
• Good high frequency response



Advantages:

• Good high frequency response

Disadvantages:



Advantages:

Good high frequency
 response

Disadvantages:

• Fragile to mechanical shock, wind, voice pops



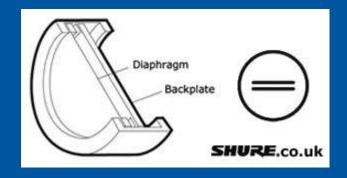
Advantages:

Good high frequency
 response

Disadvantages:

- Fragile to mechanical shock, wind, voice pops
- Very low electrical impedance requires transformer

The movement of the charged diaphragm causes a change in electrical capacitance, varying the electrical current generated.

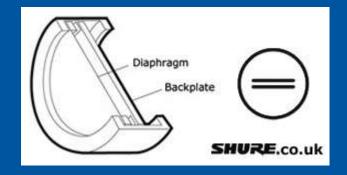

Advantages:

• Thin diaphragm is light

- Thin diaphragm is light
 - good sensitivity

- Thin diaphragm is light
 - good sensitivity
 - good high frequency response

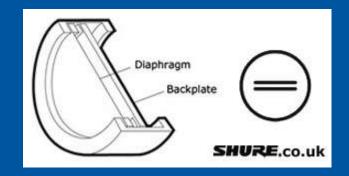
- Thin diaphragm is light
 - good sensitivity
 - good high frequency response
- Can be made small



Advantages:

- Thin diaphragm is light
 - good sensitivity
 - good high frequency response
- Can be made small

Disadvantages:



Advantages:

- Thin diaphragm is light
 - good sensitivity
 - good high frequency response
- Can be made small

Disadvantages:

• Requires external voltage source

Advantages:

- Thin diaphragm is light
 - good sensitivity
 - good high frequency response
- Can be made small

Disadvantages:

- Requires external voltage source
- Expensive to manufacture

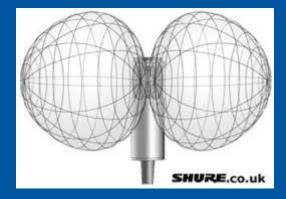
Omnidirectional

• Not directional

- Not directional
- Diaphragm only exposed on one side (front)

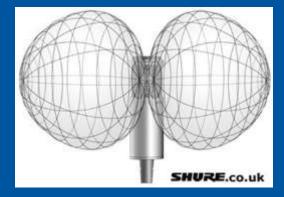
- Not directional
- Diaphragm only exposed on one side (front)
- Sensitive only to pressure variation

- Not directional
- Diaphragm only exposed on one side (front)
- Sensitive only to absolute pressure variation
- "Pressure microphone"


Bidirectional:

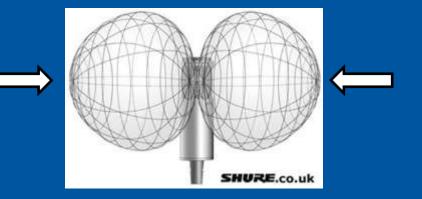
• Directional

- Directional
- Diaphragm exposed on both sides (front and back)



- Directional
- Diaphragm exposed on both sides (front and back)
- Sensitive to difference in pressure between front and back

- Directional
- Diaphragm exposed on both sides (front and back)
- Sensitive to difference in pressure between front and back
- "Pressure gradient microphone"


Bidirectional:

• Directional



- Directional
 - Responds to sound from front and back

- Directional
 - Responds to sound from front and back
 - Rejects sound from sides

CHARACTERISTIC	OMNIDIRECTIONAL
POLAR RESPONSE PATTERN	

CHARACTERISTIC	OMNIDIRECTIONAL	BIDIRECTIONAL
POLAR RESPONSE	\oplus	0 0
PATTERN		

CHARACTERISTIC	OMNIDIRECTIONAL	BIDIRECTIONAL
POLAR	\oplus	0
RESPONSE PATTERN		
POLAR EQUATION	1	COS O

CHARACTERISTIC	OMNIDIRECTIONAL	BIDIRECTIONAL	CARDIOID	
POLAR	\oplus	0	Φ	
RESPONSE PATTERN				
POLAR EQUATION	1	COS O	1/2(1+COSO)	

CHARACTERISTIC	OMNIDIRECTIONAL	BIDIRECTIONAL	SUPERCARDIOID	
POLAR	\oplus	0	Φ	
RESPONSE PATTERN				
POLAR EQUATION	1	COS O	3/8 + 5/8 COSO	

CHARACTERISTIC	OMNIDIRECTIONAL	BIDIRECTIONAL	HYPERCARDIOID
POLAR	\oplus	00	Φ
RESPONSE PATTERN			
POLAR EQUATION	1	COS O	1/4(1+3COSO)

CHARACTERISTIC	OMNIDIRECTIONAL	BIDIRECTIONAL	CARDIOID	SUPERCARDIOID	HYPERCARDIOID
POLAR RESPONSE PATTERN	\oplus	0	φ	P	Θ
		00	G		
POLAR	1	COS 0	1/2(1+COSO)	3/8 + 5/8 COSO	1/4(1+3COSO)

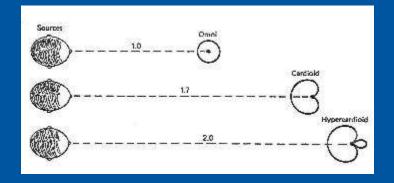
CHARACTERISTIC	OMNIDIRECTIONAL	BIDIRECTIONAL	CARDIOID	SUPERCARDIOID	HYPERCARDIOID
POLAR RESPONSE PATTERN	\oplus	æ	φ		\$
	G		G		
POLAR	1	COS 6	1/2(1+COSO)	3/8 + 5/8 COSO	1/4(1+3COS0)
COVERAGE ANGLE (3dB Drop)	360*	90*	131*	115*	105°

CHARACTERISTIC	OMNIDIRECTIONAL	BIDIRECTIONAL	CARDIOID	SUPERCARDIOID	HYPERCARDIOID
POLAR RESPONSE PATTERN	\oplus	æ	φ	\$	\$
	G		G	Sh-	
POLAR	1	COS Ø	1/2(1+COSO)	3/8 + 5/8 COSO	1/4(1+3COSO)
COVERAGE ANGLE (3d8 Drop)	360*	90*	131°	115*	105*
ANGLE OF MAX. REJECTION (Null Angle)		90*	180"	126*	110*

CHARACTERISTIC	OMNIDIRECTIONAL	BIDIRECTIONAL	CARDIOID	SUPERCARDIOID	HYPERCARDIOID
POLAR RESPONSE PATTERN	\oplus	æ	φ	\$	$\mathbf{\Phi}$
		00	B		
POLAR	1	COS 0	1/2(1+COSO)	3/8 + 5/8 COSO	1/4(1+3COSO)
COVERAGE ANGLE (3dB Drop)	360*	90*	131"	115*	105°
ANGLE OF MAX. REJECTION (Null Angle)	-72)	90*	180*	126"	110*
REAR REJECTION (@ 180*)	0dB	0dB	25dB	12dB	6dB

CHARACTERISTIC	OMNIDIRECTIONAL	BIDIRECTIONAL	CARDIOID	SUPERCARDIOID	HYPERCARDIOID
POLAR RESPONSE PATTERN	\oplus	æ	φ	P	\bigcirc
		00	G		
POLAR EQUATION	1	COS 0	1/2(1+COS0)	3/8 + 5/8 COSO	1/4(1+3COSO)
COVERAGE ANGLE (3dB Drop)	360*	90*	131*	115*	105*
ANGLE OF MAX. REJECTION (Null Angle)	-	90"	180°	126°	110*
REAR REJECTION (@ 180°)	OdB	QdB	25dB	12dB	6dB
RANDOM ENERGY EFFICIENCY (Relative to Omni)	0dB	-4.8dB	-4.8d8	-5.7dB	-6dB

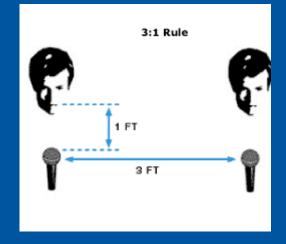
CHARACTERISTIC	OMNIDIRECTIONAL	BIDIRECTIONAL	CARDIOID	SUPERCARDIOID	HYPERCARDIOID
POLAR	\oplus	æ	φ	P	\$
PATTERN		O)O	B		
POLAR EQUATION	1	COS 0	1/2(1+COSO)	3/8 + 5/8 COSO	1/4(1+3COSO)
COVERAGE ANGLE (3dB Drop)	360*	90*	131*	115*	105*
ANGLE OF MAX. REJECTION (Null Angle)	72	90"	180"	126°	110*
REAR REJECTION (@ 180*)	DdB	OdB	25dB	12dB	6dB
RANDOM ENERGY EFFICIENCY (Relative to Omni)	0dB	-4.8dB	-4.8dB	-5.7dB	-6dB
DISTANCE FACTOR (Relative to Omni)	1	1,7	1.7	1.9	2



Distance Factor:

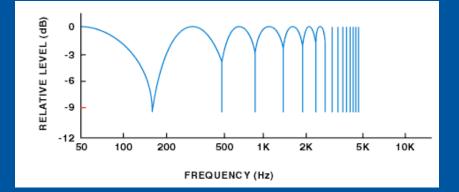
Distance Factor:

 Microphones with higher distance factor can work farther from source.



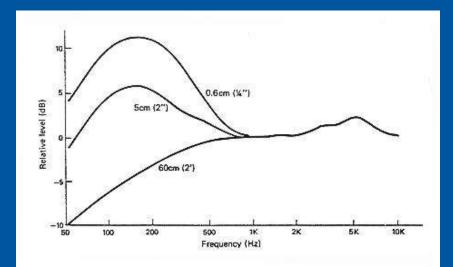
3:1 Rule:

3:1 Rule:

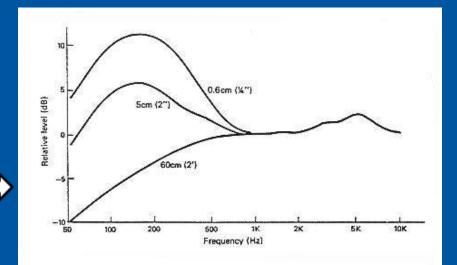

 Microphones should never be placed closer together than three times the distance between mic and source.

3:1 Rule:

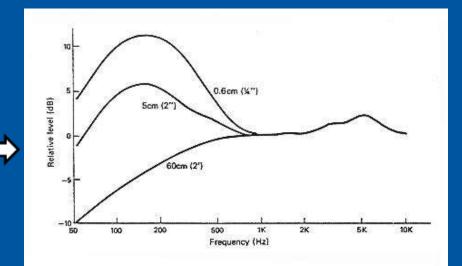
 Microphones should never be placed closer together than three times the distance between mic and source, to prevent comb-filtering.



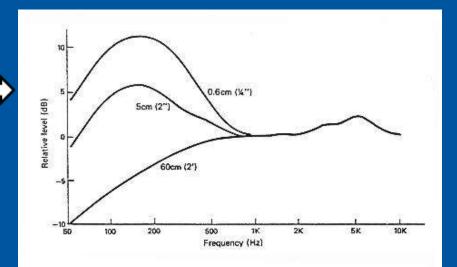
All directional microphones


All directional microphones exhibit a boost in bass (low frequencies) when working close.

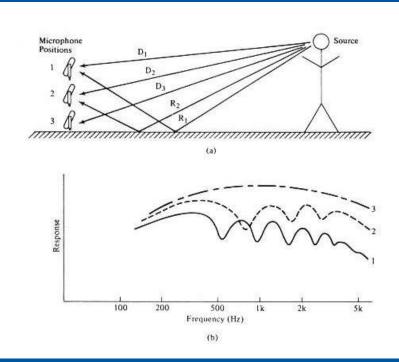
All directional microphones exhibit a boost in bass (low frequencies) when working close.

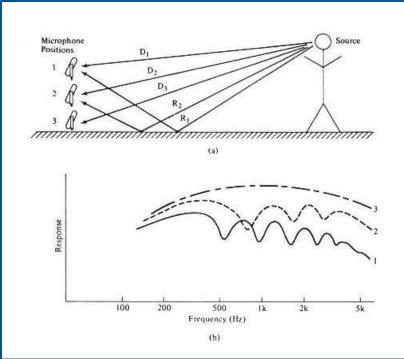

2 feet

All directional microphones exhibit a boost in bass (low frequencies) when working close.

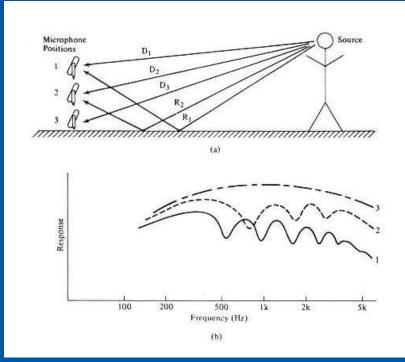

2 inches

All directional microphones exhibit a boost in bass (low frequencies) when working close.


¹/₄ inch



 Sound waves reflected from the floor or other surface cause phase cancellation at some frequency.



- Sound waves reflected from the floor or other surface cause phase cancellation at some frequency.
- The closer to a surface the microphone is mounted, the higher the frequency at which the phase cancellation takes place.

- Sound waves reflected from the floor or other surface cause phase cancellation at some frequency.
- The closer to a surface the microphone is mounted, the higher the frequency at which the phase cancellation takes place.
- 3. With the microphone mounted close to or directly on a large surface, any phase cancellation occurs at frequencies beyond the limit of hearing.

Advantages of placing a microphone close to a large boundary:

• comb-filtering is inaudible

- comb-filtering is inaudible
- doubling of SPL since direct and reflected sound waves add. (+6 dB)

- comb-filtering is inaudible
- doubling of SPL since direct and reflected sound waves add. (+6 dB)
- reverberation caused by surface eliminated at mic (direct to reverberant ratio improved by 3dB)

- comb-filtering is inaudible
- doubling of SPL since direct and reflected sound waves add. (+6 dB)
- reverberation caused by surface eliminated at mic (direct to reverberant ratio improved by 3dB – mic sounds closer)

- comb-filtering is inaudible
- doubling of SPL since direct and reflected sound waves add. (+6 dB)
- reverberation caused by surface eliminated at mic (direct to reverberant ratio improved by 3dB – mic sounds closer)
- overall improvement of 9dB

Manufacturer	Model	Quantity	Туре		Pattern	(Phantom Power	Comments	Photo
				Omni	Figure 8	Cardioid			
Audio-Technica	AT2050	2	Condenser	\oplus	8	€	x	Switchable Pattern	U
Audio-Technica	AT815	3	Condenser			\otimes	x	Shotgun	7
Audio-Technica	MB 5k	3	Dynamic			Ø		Snare/Tom	
Audio-Technica	MB 6K	1	Dynamic			Ø		Kick	

Manufacturer	Model	Quantity	Туре		Pattern	l	Phantom Power	Comments	Photo
				Omni	Figure 8	Cardioid			
Audio-Technica	MB 4K	2	Condenser			\otimes	x	Overheads	
Electrovoice	635A	1	Dynamic	\oplus					
Electrovoice	664	2	Dynamic			\otimes			
Neewer		5	Piezo	\oplus				Acoustic Instrument Pickup	-

Manufacturer	Model	Quantity	Туре		Pattern		Phantom Power	Comments	Photo
				Omni	Figure 8	Cardioid			
Provider	PSL6	18	Condenser	\oplus				Miniature Lavalier	-
Sennheiser	MD-441U	1	Dynamic			\bigotimes			1
Sennheiser	E825S	4	Dynamic			\$			
Shure	SM7B	1	Dynamic			\otimes		Studio Vocals	Y

Manufacturer	Model	Quantity	Туре	Pattern			Phantom	Comments	Photo
				Omni	Figure 8	Cardioid	Power	Comments	Photo
Shure	SM58	4	Dynamic			\$			()
Shure	WL93	11	Condenser	\oplus				Miniature Lavalier	•
Shure	WL185	2	Condenser			Φ		Miniature Lavalier	1_
Shure	MX392/C	8	Condenser			€	x	Boundary	

